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auses for software security problems
* Software domain:

* Ever-increasing complexity
* Changing functionality an

« Short release cycles | * Security domain:
* Complexity of theories

* Bug sensitivity of implementations

e Secure software domain:

— Pervasiveness of security
* Secure coding
* Security mechanisms are crosscutting

— Evolving environment
— Trade-offs security-usability, security-performance, ...
— Quality COTS (for functionality and/or security)
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Secure coding

- © Security is crosscutting in location
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 Secure coding (ctd.)

Typical examples:

— Buffer overflow

— Input validation

Often repetitive and, hence, developers tend to forget about it
Coding guidelines, compiler or run-time support can be helpful
No general-purpose solution exists:

— Canonicalization errors

— Race conditions
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eeuriiy} mechanisms are crosscutting

* Security is crosscutting in structure
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ecurity mechanisms are crosscuﬂing (ct

* Examples:
— Access control
— Confidentiality
— Privacy
* Modular security engines are only a partial solution
— Where to invoke ?
— How to access parameters ?

— Where to store security state ?

Particularly problematic for fine-grained security requirements
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Security: an evolving property

* Security of a system is often implemented once and for all
— E.g., inspired by the Common Criteria

.~ * Utopic, because of unanticipated changes

P Incomplete threat analysis

— New functional requirements

— Design optimizations for NFR's

— Changes in the system’s environment
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| Ré#uliing Problems
Scattering 1

— The specification of one property is
not encapsulated in a single module

Tangling

— Each module contains descriptions of
several properties or different

functionalities XXX

' 2009 SecAppDev 2009: Joys and horrors of AOP (Bart Do Wial

o

AOP to the rescue ...

* To optimize the modularization of application-level security
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Outline

* AOP in a nutshell
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AépeciJ in a nutshell

~ * A general-purpose AQ language
— De facto standard for the core concepts of many AO tools
— Static and dynamic language features
* An extension to Java
— Outputs .class files compatible with any JVM
— All Java programs are Aspect) programs
— Supports source-code and byte-code weaving
* Commercial sponsors
— Originally Xerox Parc, now maintained by IBM
IDE support

— Nice Eclipse plugin (AJDT)
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Joinpoints and pointeuts

- A joinpoint is a point in the dynamic execution of the software

* Different types are supported:
Method & constructor call
Method & constructor execution

public class MyPolicy extends Policy {
private Permissions perms ;

public MyPolicy ()X

— Field access (get / set) super() ;

X Excepfion handler pe;ms =new Permissions() ;
try

— Initialization <read permissions from file>

Advice execution this.verifyPermissions() ;

}
catch(IOException e){System.err.printin(e) ;}
}

* A pointcut selects a set of
it . b b private void verifyPermissions(){
]‘""P‘""fs ased on a numoer if (perms == null) return false ;

of constraints i

}
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Advice

* Advice adds behavior to a (set of) joinpoint(s):
— Similar to 2 method

— ls executed before / after / around the joinpoint
— For around advice: proceed() to resume the action at the specific

jOInPOInf before(): execution(void Foo.m(int)) {
System.out.printin(“M is executed”) ;

}

void around(): set(Foo.field) {
System.out.printin(“Are you sure?”) ;
if(<confirmed>){
proceed() ;
System.out.printin(“Foo.field changed”) ;

: )
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Advice parameterization

» Just as regular methods, advice can be parameterized
— Values come from the joinpoint context

— All parameters must be matched within the pointcut

— Use this(), target(), args()

before(int i): execution(void Foo.m(int)) && args(i) {
System.out.printin(“M is executed with argument” + i) ;

}
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A'specis

~ * Any combination of:

— Members aspect MyAspect{

— Methods int test;
int double(int j){return 2*j ;}

— Named Pointcuts

pointcut p(): call(* Foo.*(..)) ;
— Advices

before(): p({
System.out.printin(“Boo”) ;

}

}
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| ‘Aspecis' (ctd.)

- * Aspects can be declared ‘privileged’

— Have access to protected/private class members or methods

- * Advices are ordered based on standard rules

- — Can be influenced by specifying ordering constraints explicitly

| declare precedence: Security, Logging, * ; |
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' Aspéci instantiation

- © Aspects are instantiated automatically

— Cannot be created explicitly by the developer

~* Aspects are associated to a particular ‘context’

— Normally, one aspect per JVM (issingleton())

— Alternatives: perthis(), pertarget(), percflow(), pertypewithin()

— Restricts the scope of advice application !

* Association operators

— Requegfing reference | MyAspect a = MyAspect.aspectOf(<instance>) ; |

Useful to manage concern-specific state
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Executable systems ?

- * Are aspects executable units, and what does composition mean in practice ?

* Often, AOP is an extension of 00P

— AOP concepts are translated into OOP concepts (automatically / manually)
— This mapping is difficult because of crosscuttingness

- * Translation strategies:

Inlining (aka 'weaving')

Wrapping

Interception

Proxying

~ The developer is not (too much) bothered with this tedious task

2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 19

Outline

* AOP and Security in practice
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Potential usage scenarios

~ * Policy enforcement

— |mplementation (green field or add-on)
* Also reverse (e.g., disabling license checks)

~* Policy mining and monitoring
* Coding guidelines

— |mplementation

® Security testing
Verification of correct use
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Policy Enforcement

* Most interesting category
— Applies the full potential of AOP

. * All about finding ways to ‘bind the security engine’

* Design activity = > many alternative solutions
— Consider typical SE properties
— Non-functional qualities
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PIMUnit

| Appointment

Policy Enforcement — PIM
* PIM Unit owners can invoke all operations

Policy: { o Contacts only accessible to their owners
* All other accesses restricted to viewing

PIMSystem
iE3calendar
[Etas klist
Bt ontactlist

Person

SN

amne
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aspect Authentication{
private static String currentUser ;

static String getUser(){
if(currentUser == null){
currentUser = <login>;
}
return currentUser ;

}

PIMSystem
[B3calendar
[Basist
[EBcontactlist

ISinitialize()
ISview(

[Bad)
Bremove()
[Blogin(

pect OwnerManagement
perthis(this(PIMUnit)){

tring owner ;

ter(): execution(PIMUnit.new(..)){
_owner = Authentication.getUser() ;

aspect Authorization{
pointcut restrictedAccess():
execution(* Appointment.move(..)) ||
execution(* Contact.view(..)) ||
execution(* Task.setPriority(..)) ||
execution(* Task.setProgress(..));

void around(PIMUnit p): restrictedAccess() && this(p){

/lare owners identical ?

if(! OwnerManagement.aspectOf(p).owner.equals(

Authentication.getUser()))

throw new RuntimeException(“Access denied !");

else proceed() ;
}
}
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olicy Enforcement — PIM w/ JA
e With JAAS, Java offers:

— a pluggable mechanism for authentication

running the code

* JAAS can be integrated seamlessly using AOP
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— an extensible mechanism for authorization based on the subject

25
4 ;
Using JAAS (ctd.)
aspect Authentication{
private static Subject currentUser ; //one per session
public static LoginContext Ic = null ;
static Subject getUser() {
if(currentUser == null){
try{
Ic = new LoginContext("PIM", new TextCallbackHandler()) ;
Ic.login();
currentUser = Ic.getSubject() ;
}
catch(Exception e){throw new RuntimeException(e) ;}
}
return currentUser ;
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X Using JAAS (ctd.)

pointcut restrictedAccess(): execution(* Appointment.move(..)) || execution(* Contact.view(..)) ;

/lActivates a .doAsPrivileged with the currently executing subject
void around(): restrictedAccess() && !cflowbelow(restrictedAccess()){
try{
Subject.doAsPrivileged(Authentication.getUser(), new PrivilegedAction(){
public Object run() {
proceed();

/INo result is required for these particular operations
return null ;

} 1null);

catch(Exception e){e.printStackTrace() ;}

//IChecks whether the correct OwnerPermission is owned
efore(PIMUnit u): restrictedAccess() && this(u){

Subject owner = OwnerManagement.aspectOf(u).owner ;
OwnerPermission op = new OwnerPermission(owner) ;
ccessController.checkPermission(op) ;
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oficy En -
Sealing sensitive objects in memory

* Java offers support to seal the internals of sensitive objects
— javax.crypto.SealedObject

® Can be used to protect sensitive information in memory from
low level intruders

Container le--"

sealedobj

CipherManager
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ealing sensitive objecis in memory (ctd.

privileged aspect SealingAspect{
/NITD ; visibility is limited to the declaring aspect
private SealedObject Container.sealedobj ;

/[Helper pointcut to filter advice executions
pointcut SealingAdvice(): adviceexecution() && within(SealingAspect);

/lintercept construction to initialize sealed object
before(Container c): executionSContainer.new()) && this(c) &&
Icflowbelow(SealingAdvice()){
try{
/ICreate new Container to be sealed within the original Container
c.sealedobj = new SealedObject(c, CipherManager.getCipher());

catch(Exception e)}{System.err.printin(e);}
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ealing sensitive 6ijecis in memory (ctd

/lintercept GETTERS of fields
Object around(Container c): get(* Container.*) && this(c) && !cflow(SealingAdvice()) {
Object value = null ;
try{
Object unsealed = c.sealedobj.getObject(CipherManager.getCipher()) ;
Class cl = ((Container)unsealed).getClass() ;
value = cl.getField(thisJoinPoint.getSignature().getName()).get(unsealed) ;

}
catch(Exception e){System.err.printin("GET "+e);}
return value ;

}

/lintercept SETTERS of fields

void around(Container ¢, Object arg): set(* Container.*) && this(c) && args(arg) &&
Icflow(SealingAdvice()) {

try{
Object unsealed = c.sealedobj.getObject(CipherManager.getCipher());
Class cl = ((Container)unsealed).getClass();
cl.getField(thisJoinPoint.getSignature().getName()).set(unsealed,arg) ;
c.sealedobj = new SealedObject((Container)unsealed, CipherManager.getCipher());

}
- catch(Exception e){System.err.printin("SET "+e);}
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Policy mining and monitoring

* Goal: instrument the application in order to
— deduce information about policy requirements

— monitor the application to verify whether the current policy meets
the risks of the execution environment

* Heavily dependent on the particular goals and application
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| Coding guidelines'

* Typical usage is insertion of extra security tests

* Nature of tests:
— Localized, scattered
— Specific (often difficult to generalize)

* Example of input validation:

aspect InputValidation {
pointcut inputcheck(): call (String InputStream-+.read(char[])) ;

after(char[] arr): inputcheck() && args(arr) {
<validate arr>

}

T
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Discussion of AOP benefits

Abstraction

— Reasoning about one problem (or concern) at a time

— Caveat: not all AOP tools offer modular reasoning !
Verification

— Improves inspection capabilities for the security binding

— Avoids incomplete mediate errors

Reuse

— Part of the security binding can be made reusable

— As a result, the security engine/library cannot be composed wrongly
Evolution

— More localized changes facilitates the maintenance of software
— Caveat: AOP and the evolution paradox
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Outline
.~ * Security implications
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Problem statement

Software vulnerabilities are to a considerable degree due to the
complexity of:

—  Software engineering (pervasiveness)

—  Security (algorithms, domain knowledge)

Aspect-Oriented Programming (AOP) has shown to be helpful
— From a software engineering perspective. ..

* Increased modularization improves specialization, verification and manageability
—  But what about the security perspective?

* Do we really end up with secure software?

*  Statements have been made about this, but little published work is available
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A Moiivaiing example ...

package mypackage; package security;
public class SensitiveData{ aspect Authorization{

private String secret; 3 ; -
private static Policy pol;

\A
public Sens't'VEDataﬁin ng s} pointcut accessrestriction():

secret =s; ) execution(String SensitiveData.getSecret());
} o

5 void around(): accessrestriction() {
String getSecret(){ <= 3 if(! pol.isAllowed(...)) : :
return secret: AR throw new RuntimeException("Denied !");
) ] %o else proceed();
“ )

* }

*
public static void main(String[] args) {e

SensitiveData sd = new SensitiveData *) package unsecure;
"My first secret"); ¢ privileged aspect SniffingAspect{
sd.setSecret("My second secret"); gafter(SensitiveDara sd);

3 5 set(private String SensitiveData.secret) && this(sd){
} System.out.printin(sd.getSecret()); System.out.printin("The secret is now: “ + sd.secret);
}

}
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Language-level issues
[nvocation parameters can be modified
— |magine the following aspect ...

aspect PolicyMod{
pointcut polcheck(): execution(boolean Policy.isAllowed(..));

/lconsult the policy, but always return true
boolean around(): polcheck(){
boolean res = proceed();
return true;
}
}

— Parameters presented to a security engine could be modified as well
[nvocations can be redirected or even discarded entirely:

— Use a less restrictive Policy object

. — DoS scenarios
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language-lével issues (ctd.)

* Privileged aspects

—  Private internals of classes and aspects can be accessed by privileged aspects
* Log changes of private variables or executions of private methods
* Inspect and modify private, security-related attributes
* Access cflow associations
* Access inter type declarations
— As a result, it becomes very hard to protect security-specific information

~*  Remark: only possible using weaving-based AOP tools

— Allows one to “play” with Java's type safety rules (at least, from a developer’s
perspective)
— |mportant to realize the impact on security verification (e.g., information flow)
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Tool specific problems

- * Aspect] 5 uses dangerous transformations:

— When using privileged aspects to access private members, a public method
with a ‘predictable’ name is introduced in the target class !

public class SensitiveData{

/Imethod generated to access the private secret datamember
public static String ajc$privFieldGet$unsecure_SniffingAspect$mypackage_\\
SensitiveData$secret(SensitiveData sensitivedata){
return sensitivedata.secret;
}

<snip>

}
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Tool specific problems (ctd.)

— Package restricted aspects are transformed into public classes

— Private inter-type declaration members are transformed into public members
in the target class

* Aspect) compiler must control ALL the code in order to guarantee
“secure” code

* Access modifiers are checked at compile time. What about run-time
. execution?

Most probably, there will be other issues ...
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Other risks

- o Use of wildcards in PCD's

— Based on syntax instead of semantics
— Difficult to predict the effect in case of system evolution

* Aspect circumvention
— Based on woven code prediction (possibly multi-pass)
— Used to be possible in the past, but seems solved with newer compiler versions

- * Load-time weaving
— Seems like a small step from a softw. eng. perspective, but from a security point of view it
is a different model!
— The unpredictability increases:
* What in case of mew classes?
* (Can the set of aspects be changed at runtime?

- Ehﬁ use of LTW should be restricted to systems that have correct compile-time weaving
ehavior
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| Risk'synihesis

* Security risks are related to:

— Modification of the logic of a module

— Influencing the interaction or composition of modules
— Enforcement of the aspect model

* This can occur intentionally or unintentionally

— An ignorant developer could introduce security vulnerabilities without
even knowing it

— Addressing these is key
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owards a solution — academic SO

- * AOP language extensions/restrictions [Dantas06, Aldrich05, Larochelle03]
— Run-time enforcement is key
— Further restrictions might be useful

* Security-oriented program transformations [Erlingsson03,Ligatti05]
— In-line with the AOP philosophy
— Focusing on restricting functionality (e.g., access control)

* An aspect permission system is a viable alternative solution
— Logical extension of Java's permission system
* Support checking aspects for particular permissions
Empower the developer to enforce policies relevant to his particular application
Enable control over aspect-specific dynamic actions, such as cflow or aspect activation
An effective way of implementing restrictions
* More secure than a compiler-only language solution
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General overview

’_I:
Classes Aspects
Security Annotations
Binary
Executable
AOPS |~
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Problems to address (1)

- * |n standard Java, checks are inserted to enforce a policy
AccessController.checkPermission(..)

~* For AOP, the transformations (and corresponding output) of
a weaver happen under the hood

— Checks cannot always be inserted by a developer:
* JP matching (get/set) on a private member
® An inter-type member declaration (aspect developer)

=> Let the weaver insert checks for dangerous actions
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Problems to address (2)
At runtime, the identity of an aspect is not always known (for weaving

based tools)

Different scenarios in which a (security-sensitive) interference can occur:
1. Aclass is augmented with extra logic that interferes
2. An aspect, translated into a proper class, initiates the interference
3. Anaspect affects a third class that interferes as such indirectly

For case 2, available technology provides a solution
—  For limited cases: no aspect-in-aspect

More difficult for the other cases
—  Granularity of permission associations in Java is not sufficiently fine-grained
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speci-Otiehfed Permission System (AOPS

- * We have implemented AOPS based on the execution history-based
access control model

— Similar to, but more restricted than standard stack-based access control
— Can be used to control risks, as well as to implement arbitrary policies
* State updates in case of:
— Execution of advice
— Invocation of aspect method
— Direct access to aspect member
* AOPS was realized through a combination of:
— Maodifications to the weaver
— AOPS run-time library
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AOPS éugméhied code example

aspect Authorization {
pointcut normalAccess1() =.. .;

PermissionManager mngr = PermissionManager.getPermissionManager() ;
Permissions perms = new Permissions() ;

ICAL ; _
perms.add(new RightsPermission(critical)) ;
mngr.beginGrant(“security.Authorization”, perms) ; rights
if (I OwnerManagement.aspectO Back to earlier
thisJoinPoint.getThis()).owner.equals(user)) rights set

before(): normalAccessl () {
String critical = RightsPermission.SECURITYCRIT
String user = Authentication.getUser() ; Check whether
mngr.demand (new RightsPermission(critical)) ; riahts lost
mngr.endGrant() ; :
throw new RuntimeException("Access Denied !”) ;
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Outline

* Conclusion
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Best practices for implementation

* Use specific ped's (be careful with wildcards)
* Avoid the use of privileged aspects

. Use aspects that operate at interface level as much as
possible (consider to refactor your application)

* Structure aspects in packages
» Specify aspect ordering, especially for security aspects
Consider verifying coding guidelines to support this
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Best practices for development

~ * Avoid using AOP for high-risk components
— E.g., attack surface, security kernel, ...
- * Avoid using different ‘sets’ of aspects

— Pro-actively try to identify feature interactions

® Make sure that aspects are fully integrated in the
development environment

— No separate compilation steps
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Conclusions

- * The crosscuttingness of security is an important hurdle in the
development of secure software

~* AOP can optimize the modularization of application security

— Improves reasoning and evolution properties

— Different usage scenarios

* Be aware of the security implications => use wisely !

— | would advise pro AQP for small, controllable, low/medium-risk projects

® Many issues in the area of AOSD & security are open research
problems
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