Joys and horrors of aspect-oriented
programming

Bart De Win
bart.dewin@ascure.com

Secure Application Development Course, 2009

Outline

o Motivation for AOP and Security

2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win)



mailto:bart.dewin@ascure.com
mailto:bart.dewin@ascure.com

auses for software security problems
* Software domain:

* Ever-increasing complexity
* Changing functionality an

« Short release cycles | * Security domain:
* Complexity of theories

* Bug sensitivity of implementations

e Secure software domain:

— Pervasiveness of security
* Secure coding
* Security mechanisms are crosscutting

— Evolving environment
— Trade-offs security-usability, security-performance, ...
— Quality COTS (for functionality and/or security)

» 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 3

Secure coding

- © Security is crosscutting in location

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 4




 Secure coding (ctd.)

Typical examples:

— Buffer overflow

— Input validation

Often repetitive and, hence, developers tend to forget about it
Coding guidelines, compiler or run-time support can be helpful
No general-purpose solution exists:

— Canonicalization errors

— Race conditions

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 5

eeuriiy} mechanisms are crosscutting

* Security is crosscutting in structure

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win)




ecurity mechanisms are crosscuﬂing (ct

* Examples:
— Access control
— Confidentiality
— Privacy
* Modular security engines are only a partial solution
— Where to invoke ?
— How to access parameters ?

— Where to store security state ?

Particularly problematic for fine-grained security requirements

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 7

Security: an evolving property

* Security of a system is often implemented once and for all
— E.g., inspired by the Common Criteria

.~ * Utopic, because of unanticipated changes

P Incomplete threat analysis

— New functional requirements

— Design optimizations for NFR's

— Changes in the system’s environment

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 8




| Ré#uliing Problems
Scattering 1

— The specification of one property is
not encapsulated in a single module

Tangling

— Each module contains descriptions of
several properties or different

functionalities XXX

' 2009 SecAppDev 2009: Joys and horrors of AOP (Bart Do Wial

o

AOP to the rescue ...

* To optimize the modularization of application-level security

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 10




Outline

* AOP in a nutshell

2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 1l

AépeciJ in a nutshell

~ * A general-purpose AQ language
— De facto standard for the core concepts of many AO tools
— Static and dynamic language features
* An extension to Java
— Outputs .class files compatible with any JVM
— All Java programs are Aspect) programs
— Supports source-code and byte-code weaving
* Commercial sponsors
— Originally Xerox Parc, now maintained by IBM
IDE support

— Nice Eclipse plugin (AJDT)

2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 12




Joinpoints and pointeuts

- A joinpoint is a point in the dynamic execution of the software

* Different types are supported:
Method & constructor call
Method & constructor execution

public class MyPolicy extends Policy {
private Permissions perms ;

public MyPolicy ()X

— Field access (get / set) super() ;

X Excepfion handler pe;ms =new Permissions() ;
try

— Initialization <read permissions from file>

Advice execution this.verifyPermissions() ;

}
catch(IOException e){System.err.printin(e) ;}
}

* A pointcut selects a set of
it . b b private void verifyPermissions(){
]‘""P‘""fs ased on a numoer if (perms == null) return false ;

of constraints i

}

' 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 13

Advice

* Advice adds behavior to a (set of) joinpoint(s):
— Similar to 2 method

— ls executed before / after / around the joinpoint
— For around advice: proceed() to resume the action at the specific

jOInPOInf before(): execution(void Foo.m(int)) {
System.out.printin(“M is executed”) ;

}

void around(): set(Foo.field) {
System.out.printin(“Are you sure?”) ;
if(<confirmed>){
proceed() ;
System.out.printin(“Foo.field changed”) ;

: )
2009 |} SecAppDev 2009: Joys and horrors of AOP (Bart D¢ Win) 14




Advice parameterization

» Just as regular methods, advice can be parameterized
— Values come from the joinpoint context

— All parameters must be matched within the pointcut

— Use this(), target(), args()

before(int i): execution(void Foo.m(int)) && args(i) {
System.out.printin(“M is executed with argument” + i) ;

}

2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 15

A'specis

~ * Any combination of:

— Members aspect MyAspect{

— Methods int test;
int double(int j){return 2*j ;}

— Named Pointcuts

pointcut p(): call(* Foo.*(..)) ;
— Advices

before(): p({
System.out.printin(“Boo”) ;

}

}

2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 16




| ‘Aspecis' (ctd.)

- * Aspects can be declared ‘privileged’

— Have access to protected/private class members or methods

- * Advices are ordered based on standard rules

- — Can be influenced by specifying ordering constraints explicitly

| declare precedence: Security, Logging, * ; |

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 17

' Aspéci instantiation

- © Aspects are instantiated automatically

— Cannot be created explicitly by the developer

~* Aspects are associated to a particular ‘context’

— Normally, one aspect per JVM (issingleton())

— Alternatives: perthis(), pertarget(), percflow(), pertypewithin()

— Restricts the scope of advice application !

* Association operators

— Requegfing reference | MyAspect a = MyAspect.aspectOf(<instance>) ; |

Useful to manage concern-specific state

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 18




Executable systems ?

- * Are aspects executable units, and what does composition mean in practice ?

* Often, AOP is an extension of 00P

— AOP concepts are translated into OOP concepts (automatically / manually)
— This mapping is difficult because of crosscuttingness

- * Translation strategies:

Inlining (aka 'weaving')

Wrapping

Interception

Proxying

~ The developer is not (too much) bothered with this tedious task

2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 19

Outline

* AOP and Security in practice

2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 20




Potential usage scenarios

~ * Policy enforcement

— |mplementation (green field or add-on)
* Also reverse (e.g., disabling license checks)

~* Policy mining and monitoring
* Coding guidelines

— |mplementation

® Security testing
Verification of correct use

' 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 2

Policy Enforcement

* Most interesting category
— Applies the full potential of AOP

. * All about finding ways to ‘bind the security engine’

* Design activity = > many alternative solutions
— Consider typical SE properties
— Non-functional qualities

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 22




PIMUnit

| Appointment

Policy Enforcement — PIM
* PIM Unit owners can invoke all operations

Policy: { o Contacts only accessible to their owners
* All other accesses restricted to viewing

PIMSystem
iE3calendar
[Etas klist
Bt ontactlist

Person

SN

amne

2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win)

23

aspect Authentication{
private static String currentUser ;

static String getUser(){
if(currentUser == null){
currentUser = <login>;
}
return currentUser ;

}

PIMSystem
[B3calendar
[Basist
[EBcontactlist

ISinitialize()
ISview(

[Bad)
Bremove()
[Blogin(

pect OwnerManagement
perthis(this(PIMUnit)){

tring owner ;

ter(): execution(PIMUnit.new(..)){
_owner = Authentication.getUser() ;

aspect Authorization{
pointcut restrictedAccess():
execution(* Appointment.move(..)) ||
execution(* Contact.view(..)) ||
execution(* Task.setPriority(..)) ||
execution(* Task.setProgress(..));

void around(PIMUnit p): restrictedAccess() && this(p){

/lare owners identical ?

if(! OwnerManagement.aspectOf(p).owner.equals(

Authentication.getUser()))

throw new RuntimeException(“Access denied !");

else proceed() ;
}
}

2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win)

24

12



olicy Enforcement — PIM w/ JA
e With JAAS, Java offers:

— a pluggable mechanism for authentication

running the code

* JAAS can be integrated seamlessly using AOP

' 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win)

— an extensible mechanism for authorization based on the subject

25
4 ;
Using JAAS (ctd.)
aspect Authentication{
private static Subject currentUser ; //one per session
public static LoginContext Ic = null ;
static Subject getUser() {
if(currentUser == null){
try{
Ic = new LoginContext("PIM", new TextCallbackHandler()) ;
Ic.login();
currentUser = Ic.getSubject() ;
}
catch(Exception e){throw new RuntimeException(e) ;}
}
return currentUser ;
2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 26

13



X Using JAAS (ctd.)

pointcut restrictedAccess(): execution(* Appointment.move(..)) || execution(* Contact.view(..)) ;

/lActivates a .doAsPrivileged with the currently executing subject
void around(): restrictedAccess() && !cflowbelow(restrictedAccess()){
try{
Subject.doAsPrivileged(Authentication.getUser(), new PrivilegedAction(){
public Object run() {
proceed();

/INo result is required for these particular operations
return null ;

} 1null);

catch(Exception e){e.printStackTrace() ;}

//IChecks whether the correct OwnerPermission is owned
efore(PIMUnit u): restrictedAccess() && this(u){

Subject owner = OwnerManagement.aspectOf(u).owner ;
OwnerPermission op = new OwnerPermission(owner) ;
ccessController.checkPermission(op) ;

2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 27

oficy En -
Sealing sensitive objects in memory

* Java offers support to seal the internals of sensitive objects
— javax.crypto.SealedObject

® Can be used to protect sensitive information in memory from
low level intruders

Container le--"

sealedobj

CipherManager

2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 28

14



ealing sensitive objecis in memory (ctd.

privileged aspect SealingAspect{
/NITD ; visibility is limited to the declaring aspect
private SealedObject Container.sealedobj ;

/[Helper pointcut to filter advice executions
pointcut SealingAdvice(): adviceexecution() && within(SealingAspect);

/lintercept construction to initialize sealed object
before(Container c): executionSContainer.new()) && this(c) &&
Icflowbelow(SealingAdvice()){
try{
/ICreate new Container to be sealed within the original Container
c.sealedobj = new SealedObject(c, CipherManager.getCipher());

catch(Exception e)}{System.err.printin(e);}

' 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win)

29

ealing sensitive 6ijecis in memory (ctd

/lintercept GETTERS of fields
Object around(Container c): get(* Container.*) && this(c) && !cflow(SealingAdvice()) {
Object value = null ;
try{
Object unsealed = c.sealedobj.getObject(CipherManager.getCipher()) ;
Class cl = ((Container)unsealed).getClass() ;
value = cl.getField(thisJoinPoint.getSignature().getName()).get(unsealed) ;

}
catch(Exception e){System.err.printin("GET "+e);}
return value ;

}

/lintercept SETTERS of fields

void around(Container ¢, Object arg): set(* Container.*) && this(c) && args(arg) &&
Icflow(SealingAdvice()) {

try{
Object unsealed = c.sealedobj.getObject(CipherManager.getCipher());
Class cl = ((Container)unsealed).getClass();
cl.getField(thisJoinPoint.getSignature().getName()).set(unsealed,arg) ;
c.sealedobj = new SealedObject((Container)unsealed, CipherManager.getCipher());

}
- catch(Exception e){System.err.printin("SET "+e);}

: 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win)

30

15



Policy mining and monitoring

* Goal: instrument the application in order to
— deduce information about policy requirements

— monitor the application to verify whether the current policy meets
the risks of the execution environment

* Heavily dependent on the particular goals and application

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 31

| Coding guidelines'

* Typical usage is insertion of extra security tests

* Nature of tests:
— Localized, scattered
— Specific (often difficult to generalize)

* Example of input validation:

aspect InputValidation {
pointcut inputcheck(): call (String InputStream-+.read(char[])) ;

after(char[] arr): inputcheck() && args(arr) {
<validate arr>

}

T
2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 32

16



Discussion of AOP benefits

Abstraction

— Reasoning about one problem (or concern) at a time

— Caveat: not all AOP tools offer modular reasoning !
Verification

— Improves inspection capabilities for the security binding

— Avoids incomplete mediate errors

Reuse

— Part of the security binding can be made reusable

— As a result, the security engine/library cannot be composed wrongly
Evolution

— More localized changes facilitates the maintenance of software
— Caveat: AOP and the evolution paradox

2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 33
[ ]
Outline
.~ * Security implications
2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 34

17



Problem statement

Software vulnerabilities are to a considerable degree due to the
complexity of:

—  Software engineering (pervasiveness)

—  Security (algorithms, domain knowledge)

Aspect-Oriented Programming (AOP) has shown to be helpful
— From a software engineering perspective. ..

* Increased modularization improves specialization, verification and manageability
—  But what about the security perspective?

* Do we really end up with secure software?

*  Statements have been made about this, but little published work is available

' 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 35

A Moiivaiing example ...

package mypackage; package security;
public class SensitiveData{ aspect Authorization{

private String secret; 3 ; -
private static Policy pol;

\A
public Sens't'VEDataﬁin ng s} pointcut accessrestriction():

secret =s; ) execution(String SensitiveData.getSecret());
} o

5 void around(): accessrestriction() {
String getSecret(){ <= 3 if(! pol.isAllowed(...)) : :
return secret: AR throw new RuntimeException("Denied !");
) ] %o else proceed();
“ )

* }

*
public static void main(String[] args) {e

SensitiveData sd = new SensitiveData *) package unsecure;
"My first secret"); ¢ privileged aspect SniffingAspect{
sd.setSecret("My second secret"); gafter(SensitiveDara sd);

3 5 set(private String SensitiveData.secret) && this(sd){
} System.out.printin(sd.getSecret()); System.out.printin("The secret is now: “ + sd.secret);
}

}

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 36

18



Language-level issues
[nvocation parameters can be modified
— |magine the following aspect ...

aspect PolicyMod{
pointcut polcheck(): execution(boolean Policy.isAllowed(..));

/lconsult the policy, but always return true
boolean around(): polcheck(){
boolean res = proceed();
return true;
}
}

— Parameters presented to a security engine could be modified as well
[nvocations can be redirected or even discarded entirely:

— Use a less restrictive Policy object

. — DoS scenarios

' 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win)

37

language-lével issues (ctd.)

* Privileged aspects

—  Private internals of classes and aspects can be accessed by privileged aspects
* Log changes of private variables or executions of private methods
* Inspect and modify private, security-related attributes
* Access cflow associations
* Access inter type declarations
— As a result, it becomes very hard to protect security-specific information

~*  Remark: only possible using weaving-based AOP tools

— Allows one to “play” with Java's type safety rules (at least, from a developer’s
perspective)
— |mportant to realize the impact on security verification (e.g., information flow)

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win)

38

19



Tool specific problems

- * Aspect] 5 uses dangerous transformations:

— When using privileged aspects to access private members, a public method
with a ‘predictable’ name is introduced in the target class !

public class SensitiveData{

/Imethod generated to access the private secret datamember
public static String ajc$privFieldGet$unsecure_SniffingAspect$mypackage_\\
SensitiveData$secret(SensitiveData sensitivedata){
return sensitivedata.secret;
}

<snip>

}

' 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 39

Tool specific problems (ctd.)

— Package restricted aspects are transformed into public classes

— Private inter-type declaration members are transformed into public members
in the target class

* Aspect) compiler must control ALL the code in order to guarantee
“secure” code

* Access modifiers are checked at compile time. What about run-time
. execution?

Most probably, there will be other issues ...

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 40

20



Other risks

- o Use of wildcards in PCD's

— Based on syntax instead of semantics
— Difficult to predict the effect in case of system evolution

* Aspect circumvention
— Based on woven code prediction (possibly multi-pass)
— Used to be possible in the past, but seems solved with newer compiler versions

- * Load-time weaving
— Seems like a small step from a softw. eng. perspective, but from a security point of view it
is a different model!
— The unpredictability increases:
* What in case of mew classes?
* (Can the set of aspects be changed at runtime?

- Ehﬁ use of LTW should be restricted to systems that have correct compile-time weaving
ehavior

' 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 4

| Risk'synihesis

* Security risks are related to:

— Modification of the logic of a module

— Influencing the interaction or composition of modules
— Enforcement of the aspect model

* This can occur intentionally or unintentionally

— An ignorant developer could introduce security vulnerabilities without
even knowing it

— Addressing these is key

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 42

21



owards a solution — academic SO

- * AOP language extensions/restrictions [Dantas06, Aldrich05, Larochelle03]
— Run-time enforcement is key
— Further restrictions might be useful

* Security-oriented program transformations [Erlingsson03,Ligatti05]
— In-line with the AOP philosophy
— Focusing on restricting functionality (e.g., access control)

* An aspect permission system is a viable alternative solution
— Logical extension of Java's permission system
* Support checking aspects for particular permissions
Empower the developer to enforce policies relevant to his particular application
Enable control over aspect-specific dynamic actions, such as cflow or aspect activation
An effective way of implementing restrictions
* More secure than a compiler-only language solution

' 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win)

General overview

’_I:
Classes Aspects
Security Annotations
Binary
Executable
AOPS |~
2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win)

22



Problems to address (1)

- * |n standard Java, checks are inserted to enforce a policy
AccessController.checkPermission(..)

~* For AOP, the transformations (and corresponding output) of
a weaver happen under the hood

— Checks cannot always be inserted by a developer:
* JP matching (get/set) on a private member
® An inter-type member declaration (aspect developer)

=> Let the weaver insert checks for dangerous actions

» 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 45

Problems to address (2)
At runtime, the identity of an aspect is not always known (for weaving

based tools)

Different scenarios in which a (security-sensitive) interference can occur:
1. Aclass is augmented with extra logic that interferes
2. An aspect, translated into a proper class, initiates the interference
3. Anaspect affects a third class that interferes as such indirectly

For case 2, available technology provides a solution
—  For limited cases: no aspect-in-aspect

More difficult for the other cases
—  Granularity of permission associations in Java is not sufficiently fine-grained

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 46

23



speci-Otiehfed Permission System (AOPS

- * We have implemented AOPS based on the execution history-based
access control model

— Similar to, but more restricted than standard stack-based access control
— Can be used to control risks, as well as to implement arbitrary policies
* State updates in case of:
— Execution of advice
— Invocation of aspect method
— Direct access to aspect member
* AOPS was realized through a combination of:
— Maodifications to the weaver
— AOPS run-time library

' 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 47

AOPS éugméhied code example

aspect Authorization {
pointcut normalAccess1() =.. .;

PermissionManager mngr = PermissionManager.getPermissionManager() ;
Permissions perms = new Permissions() ;

ICAL ; _
perms.add(new RightsPermission(critical)) ;
mngr.beginGrant(“security.Authorization”, perms) ; rights
if (I OwnerManagement.aspectO Back to earlier
thisJoinPoint.getThis()).owner.equals(user)) rights set

before(): normalAccessl () {
String critical = RightsPermission.SECURITYCRIT
String user = Authentication.getUser() ; Check whether
mngr.demand (new RightsPermission(critical)) ; riahts lost
mngr.endGrant() ; :
throw new RuntimeException("Access Denied !”) ;

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 48

24



Outline

* Conclusion

' 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win)

49

Best practices for implementation

* Use specific ped's (be careful with wildcards)
* Avoid the use of privileged aspects

. Use aspects that operate at interface level as much as
possible (consider to refactor your application)

* Structure aspects in packages
» Specify aspect ordering, especially for security aspects
Consider verifying coding guidelines to support this

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win)

50

25



Best practices for development

~ * Avoid using AOP for high-risk components
— E.g., attack surface, security kernel, ...
- * Avoid using different ‘sets’ of aspects

— Pro-actively try to identify feature interactions

® Make sure that aspects are fully integrated in the
development environment

— No separate compilation steps

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 51

Conclusions

- * The crosscuttingness of security is an important hurdle in the
development of secure software

~* AOP can optimize the modularization of application security

— Improves reasoning and evolution properties

— Different usage scenarios

* Be aware of the security implications => use wisely !

— | would advise pro AQP for small, controllable, low/medium-risk projects

® Many issues in the area of AOSD & security are open research
problems

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 52

26



References

* AOSD & Aspect)

The Aspect) programming guide, semantic appendix and quick reference
(http://www.eclipse.org/aspectj/docs.php)

—  Ramnivas Laddad, “Aspect] in Action”, Manning Publications, 2003.

—  Stefan Hanneman and Arno Schmidmeier, “AspectJ idioms for Aspect-Oriented Software Construction”, 8%
EuroPLOP, June 2003.

—  Gregor Kiczales and Mira Mezini, “Aspect-oriented programming and modular reasoning”, 27" lnternational
Congerence on Software Engineering, May 2005.

—  Tom Tourwe, Johan Brichau, and Kris Gybels, “On the existence of the AOSD-evolution paradox”, AOSD Workshop

i on Software-Engineering Properties of Languages for Aspect Technologies (SPLAT), 2003.

*  AOSD & security
— Bart De Win, Frank Piessens, Wouter Joosen, and Tine Verhanneman, “On the importance of the separation-of-

concerns principles in secure software engineering”, ACSA Workshop on the Application of Engineering Principles
to System Security Design, 2003.

—  Bart De Win, Wouter Joosen, and Frank Piessens, “Developing Secure Applications through Aspect-Oriented
Software Development”, Aspect Oriented Software Development, Addison-Wesley, 2004, pp. 633-650.

—  Viren Shah and Frank Hill. Using Aspect-Oriented Programming for Addressing Security Concerns, International
Symposium on Software Reliability Engineering (ISSRE'2002), 2002.

—  Ron Bodkin, “Enterprise Security Aspects”, Workshop on AOSD Technology for Application-level Security, 2004.

» 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 53

" References (ctd.)

* Research challenges

— Daniel Dantas and David Walker, “Aspects, Information Hiding and Modularity”, Conference
on Programming Language Design and Implementation (PLDI), 2004.

— Bart De Win, Frank Piessens, and Wouter Joosen, “How Secure is AOP and What can we Do
about it?", Workshop on Software Engineering for Secure Systems (SESS), 2006.

— David Larochelle, Karl Scheidt, and Kevin Sullivan, “Join Point Encapsulation”, AOSD
Workshop on Software-Engineering Properties of Languages for Aspect Technologies
(SPLAT), 2003.

— Danien Dantas and David Walker, “Harmless Advice”, Symposium on Principles of
Programming Languages (POPL), 2006.

— U. Erlingsson, The Inlined Reference Monitor Approach to Security Policy Enforcement.
Ph.D. thesis, Technical Report 2003-1916, Department of Computer Science, Cornell
University, Ithaca, NY, 2003.

— Jay Ligatti, Lujo Bauer, and David Walker, Enforcing non-safety security policies with
program monitors, In Proceedings of the 10th European Symposium on Research in
Computer Security (ESORICS), September 2005

- 2009 SecAppDev 2009: Joys and horrors of AOP (Bart De Win) 54

27



